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ELASTIC-PLASTIC-CREEP-LARGE STRAIN ANALYSIS AT ELEVATED
TEMPERATURE BY THE FINITE ELEMENT METHOD

Walter E. Haisler and Duane R. Sanders

Aerospace Engineering Department
Texas A&M University
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ABSTRACT

This paper is divided into three parts. First, a review of currently
available incremental theories of plasticity and creep constituitive
models is given. Second, a formulation is presented for the non-isothermal,
elastic-plastic-creep-large strain analysis by the finite element method.
Third, results obtained with the AGGIE I computer program for several
isothermal, elastic-creep and elastic-plastic analyses are presented.
The present numerical results show good agreement with experimental and

other numerical results.

INTRODUCTION

Although the finite element method has long been recognized as a very
powerful analysis tool, its usefulness has been negated to some extent due
to our inability to find suitable constituitive relations for modeling
problems with combined elastic-plastic-creep-large strain behavior. This
fact is brought out when one considers the wide abundance of plasticity
hardening rules and creep constituitive equations which have been developed.
Many of the shortcomings of the constituitive models are due to simplifying
assumptions such as the uncoupling of creep, plasticity, rate and other

mechanisms and the separation of inelastic strain into time dependent and




independent parts. Although early researchers were forced somewhat into

these assumptions, there currently seems to be a trend in the other direction;
for example, the so-called "unified theories" are attracting more and more
attention.

The purpose of this paper is several fold. First, to review the
classical plasticity theory and the several categories of creep constituitive
models currently available. Second, to present an incremental formulation
for the non-isothermal elastic-plastic-creep-large strain analysis by the
finite element method. And, third, to present some numerical results
for several elastic-creep and elastic-plastic problems that have been obtained

with the AGGIE computer program.

INCREMENTAL THEORY OF PLASTICITY

The classical incremental theories of plasticity make use of an initial
yield condition, a hardening rule, and a flow rule in characterizing the
strain-hardening response of a material. Although these classical theories
continue to be utilized extensively in finite element computer programs,
this may be true only because more suitable models have not yet been
developed. Comparison [1,2] of the models with experimental results indicates
relatively good agreement in uniaxial cases under simple loading conditions.
However, for biaxial and triaxial cases and situations where the loading is
cyclic, when creep and plasticity interact, when the strain rates are high,
etc., the results are often in disagreement with experiment. The difficulty
is compounded by the fact that the hardening rules give good results for

some materials but behave poorly for others.

Yield Condition

The two most widely used yield conditions are the Tresca (maximum

shear stress) and von Mises (J2 theory) conditions. For isotropic metals,




the von Mises yield condition generally provides a better description

of initial yielding than does the Tresca condition. However, for rocks
and soils, the Tresca condition is often used. Other yield conditions
have been proposed, however, these have not found wide use because of
their mathematical complexity. The von Mises yield condition is used

in all work reported herein.

Flow Rule

A flow rule is used to separate the total strain increment into elastic
and plastic components. The most generally accepted flow rule, termed the
normality condition, states that as the stress state of a material point
comes into contact with and pierces the material's yield surface, the
resulting plastic strain increment is along the outward normal to the
yield surface at the point of penetration. Experimental evidence has shown
that the normality condition is generally valid for a wide range of mat-

erials [3].

Hardening Rule

The hardening rule provides a description of the changing size and
shape of the subsequent yield surface during plastic flow. In addition to
simple expansion and/or translation, experimental evidence has shown that
subsequent yield surfaces may exhibit corners, general distortion, various
Bauschinger effects, and dependence on prior cyclic history, strain rate
and hold time to mention only a few parameters [3]. For simplicity, most
finite element programs make use of hardening rules which account only for
expansion and/or translation of the yield surface.

The classical isotropic hardening rule postulates that the yield surface
expands uniformly during plastic deformation. In its simplest form wherein

one assumes the von Mises yield condition and associated flow rule, the rate




of strain hardening may be obtained by relating a value of equivalent total
plastic strain to a point on a uniaxial stress-strain curve, so that a simple
tensile test is all that is necessary to determine the hardening rule
parameters. The simplicity of applying the isotropic hardening rule has made
it very popular in finite element plasticity analysis.

In contrast, the kinematic hardening model of Prager-ziegler [4]
proposes that the yield surface translates as a rigid shape during plastic
flow; the direction of translation being given by a vector connecting the
current center of the yield surface and the current stress state. This
gives rise to an ideal Bauschinger effect in which the reverse yield stress
is lTowered by an amount equal to fhe prior strain hardening.

The Besseling-White (mechanical sublayer) model [5] makes use of a
superposition of elastic-perfectly plastic stress states to approximate
strain hardening behavior. This model is often idealized mechanically
as a parallel arrangement of elastic-perfectly plastic layers whose yield
stresses are adjusted to duplicate a piece-wise linearization of the uniaxial
stress-strain curve (the number of layers being equal to the number of points
selected on the stress-strain curve). Like the kinematic model, the mechanical
sublayer model predicts a rigid translation of the yield surface.

The hardening model proposed by Mroz employs the concept of a field
of surfaces of constant work hardening moduli. Each point of a piece-wise
linear uniaxial stress-strain curve is represented in stress space by a
surface geometrically similar to the initial yield surface but of different
size. The yield surface is assumed to expand and translate within this field,
contacting and pushing each surface along with it as each is encountered.
Conceptually, the Mroz model is similar to the mechanical sublayer model.

Recently, Krieg [6] proposed a two surface plasticity model where the




yield surface translates and expands within an enclosing "limit surface", which

also is allowed to translate and expand independently of the yield surface.
The hardening modulus is then assumed to be a function of the distance
between the two surfaces at the loading point. The model requires two
material tests: a uniaxial tension test carried out to moderate strains and
a uniaxial loading, unloading, reverse loading test. The model has not yet
found wide use but would appear to be an improvement over simple isotropic
and kinematic hardening. Another model which has not found wide use as of
yet is the piecewise linear strainhardening theory of Hodge [7] which makes
use of a yield polygon.

As experimental evidence points out, isotropic end kinematic hardening
tend to bracket actual material response in many cases and, for this reason,
a number of combined isotropic-kinematic models have been proposed. Most
models are based on a constant ratio of expansion to translation although
some results have been reported for a variable ratio based on accumulated

plastic strain [8].

CREEP CONSTITUITIVE MODELS

As in plasticity theory, there exists a wide variety of constituitive
equations which have been proposed for modeling creep behavior. Unlike
the plasticity models, the various creep models differ significantly in
mathematical form and physical basis; some are purely equation of state
approaches, some are based on viscoelastic and hereditary integral methods,
some are based on adhoc rules while some have a rigorous thermodynamic
basis, etc. This section will provide a brief overview of several creep
models (by category as listed below) which are currently available. For our
purposes, the following categories are listed: 1) Phenomenological (equation-

of-state) theory, 2) Memory or hereditary theory, 3) Nonlinear viscoelastic




theory, 4) subelement theory, 5) Krempl's theory, 6) Valanis' theory, and
7) Unified theory.

The most widely used means of describing creep behavior is the phenom-
enological (equation-of-state) creep theory. A good review of this theory
is given in Refs. [9] and [10]. This representation of creep strains is
similar to that used in the incremental theory of plasticity, i.e., three
relationships are used: 1) uniaxial creep law (obtained from a uniaxial
creep test), 2) a flow rule, and 3) a hardening law. Nickell's survey [10]
of computer programs which incorporate creep strains shows that a majority
of these programs use the phenomenological creep theory. References [11]
and [12] show application of this theory to plane stress, plane strain, and
axisymmetric problems which contain no plastic deformation. In Ref. [13],
isothermal elastic-plastic-creep computer programs are developed for two-
dimensional analysis. In Ref. [14], a non-isothermal elastic-plastic-creep
computer program is developed for flat and curved, thick and thin shell
elements of triangular and quadrilateral form. Subtle refinements to the
phenomenological theory have been discussed and their importance stressed
by varions researchers. In Refs. [11] and [12], the importance of time
step size on convergence and solution time is pointed out. Reference [15]
indicates the importance of the subincremental approach as applied to creep
strains. For load reversal conditions, auxiliary procedures are outlined
in Ref. [16] which avoids the inconsistency which is present if the
phenomenological theory is applied in the usual manner.

The memory (or hereditary) theory has a good theoretical background [17]
and has been implemented into a finite element computer program by Rashid [18].
A comparison of advantages and disadvantages of the phenomenological and

memory theories is given in Ref. [19]. This theory is similar to linear vis-




coelasticity, however, metals are characterized generally as nonlinear
viscoelastic materials and generally do not obey the linear superposition
that linear viscoelastic materials do. However, both Schapery [17] and
Rashid [18] have demonstrated that the simple integral approach as used in
linear viscoelasticity can be used if a reduced time replaces the physical
time. Normally, creep, relaxation and/or recovery tests are required to
determine the necessary material parameters.

In the nonlinear viscoelastic approach, the constituitive relation is
expressed as an integral polynomial [20]. It is pointed out in Refs. [18]
and [20] that although the multiple integral approach does hold promise, the
experimental data (multistep creep tests) necessary to implement this theory
are generally not available at this time. As of yet, no application of
this theory to a producticn-scale finite element computer program has
apparently been made.

In the subelement theory [21], the material is idealized by a number of
subelements each possessing secondary creep behavior, but with different
creep rates. Due to interaction of the subelements, primary and recovery
behavior can be determined from this model. The necessary material constants
are determined from the results of a standard creep test. Details of a finite
element program utilizing the subelement method are reported in Ref. [21].

Krempl [22, 23] has presented a constituitive theory for modeling
elastic-plastic-creep response which is based on total strain (as opposed
to the conventional approach where the total strain is separated into various
components). Operational definitions of aging, history dependence and rate
dependence are included. A loading and unloading criteria is employed whereby
the elastic response is handled as an integral part of the constituitive

equation. The constituitive equation contains separation functions for




describing rate and history dependence. The history dependence is accounted

for by a tensor valued function called the microstructure memory function

with a discontinuous growth law which is operative at points of unloading and
serves to expand the yield surface due to prior strain history. Rate dependence
is modeled by time derivatives of stress in a differential constituitive

model and by time dependence of the kernel in an integral form of the
constituitive law. Krempl's theory has not yet found wide use in general

finite element programs.

The endochronic theory of Valanis [24] and the "unified" theories [25-27]
represent significant departures from the classical approaches for handling
elastic-plastic-creep behavior. Valanis develops his endochronic theory from
continuum and thermodynamic concepts but avoids the definition of a yield
surface. The unified theories treat the inelastic strain as a unified
quantity which is not separable into time dependent and time independent
parts. This inseparability has been observed experimentally, especially at
high temperatures, but has been largely ignored for computational simplicity.
Although the unified theories have not yet found their way into general finite
element programs, these authors are of the opinion that this approach will

ultimately provide much more reliable constituitive models.

INCREMENTAL EQUATIONS OF EQUILIBRIUM
In this section, an incremental finite element formulation for the
non-isothermal, elastic-plastic-creep-large strain problem is developed.
One may begin with the equation of equilibrium written in terms of the 2nd
Piola-Kirchhoff stress

ou,
1

Ol 1 =
33 [Sjk(éik i aak)] *ogfoi =0 (1)

where a; and u,; are Lagrangian coordinates and displacements, respectively,




v

is undeformed density and

Sjk is the 2nd Piola-Kirchhoff stress tensor, o

Foi is the body force per unit undeformed volume per unit mass. Applying

the virtual work principle at time t + At yields
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js the variation of the Green-Lagrange strains at tim: t+At and
are surface tractions at time t+at applied to the deformed surface S.

Equation (2) may be put into incremental form by writing
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where ng and E?j are stresses and strains at time t and Asij and AEij are
increments of stress and strain, respectively. The strain increment may be

decomposed into components which are linear and nonlinear in the displacement

increments
_ L NL &
AEij = AEij + AEij 5)
where t t
g abuy dAu;  BAUL Bu BUy U
AEij R ]/Z(aa Y 32, | da. 2a t e 3 )
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Substituting Eqs. (4) and (5) into (2) yields

t L t NL L NL t+at
S = - b o gt =
Jﬁ ij GAE]J dv + ./; S1J ME1J dv + _/; AS1J G(AE1J AEIJ)dV SR
0 0 0 (7)




The stress increment may be decomposed into two components, one which is

dependent upon total strain and one which is independent of strain (i.e.,
creep, thermal, etc.):

B335 = Biser % T 204y (8)
where Dijk] is the usual effective tangent modulus and Apij is a stress %

increment due to strain independent phenomena (as is usually assumed in

creep). Substituting Eq. (8) into Eq. (7), making use of Eq. (5), and
neglecting terms which would be nonlinear in displacement increments,

yields the following:

i L L t NL |
f AEk] Dijk] 6(AE1.j)dV + f (Sij + APiJ.) 5(AE1.J.) dv |
' Vv —

0 (0] (9)

ey w7 |

B t L SEFAL
= / (Sij + APij) G(AEij)dV + 6R

Yo

The term APij may be interpretted as the change in stress required to

account for the creep and thermal strains. Equation (9) takes on the

following form when put into matrix form

i o

M3t 3+ (IKED + IkE Dieay = ®EEE) - Y (10) :

s

where [M] is the mass matrix, [KE] and [K;L] are "linear" and "nonlinear"

stiffness matrices, {Rt+At

} is a vector of forces due to externally applied
loads, {Ft} is a vector of forces due to internal stress, and {Aq} is the
increment of the nodal displacements. Complete details of the derivation
of the quantities in Eq. (10), without creep, may be found in Ref. [28].

We now present a summary of the determination of Dijkl and APij 3

for kinematic hardening for the non-isothermal case. We assume a yield
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surface can be expressed by

E=f-K =8 (11)

For kinematic hardening, we write

- - - -

£ = 1/2(8 e =y (12)
F = W25y - oy5H(555 - wyy) (12)
and S;j and a;j are deviatoric components of the 2nd Piola-Kirchhoff
stress and yield surface center, respectively. The yield surface size
parameter, K, is taken to be a function of temperature, T, such that
K2 = 1/3[oy(T)]2 (13)

where %y is the temperature-dependent initial (or subsequent) yield stress.
In general, one can write

E.,T) =0 (14)

F(Sij, aij, ij

where E?j is the plastic component of strain.

For a stress point to remain on the yield surface during plastic flow

requires that 2 (K2
2 L . = . A a , . 2
: S5 (Sg5-oygd -t —T=0 (15)

where the dot denotes rate. Considering Eq. (14), one can also write

_ oF oF P oF :
dF—S—S—_—_dSﬁ +——-p-—dE1.J. + qdT (16)
ij 3Eij

and note that dF

0 for a stress point to remain on the yield surface.
It is assumed that the plastic strain rate (flow rule) can be expressed

as p

E

3F ¢
.= A —— F (17)
iJ aSij
where ) is a scalar parameter to be determined.

From the normality condition,

T
%4 38 = © by w/ (18)




where ¢ is a scalar (hardening modulus) to be determined from a uniaxial
stress-strain curve.

Substituting Egs. (17) and (18) into (15) yields

R
;3 [Si5 - ¢ * 35

For small elastic strains, the decomposition of strains is assumed

e _ . -P Ofe
Sij z Eijmn(Emn - Enn = Egn) (20)

where Eijmn is the elastic constituitive tensor and E;n are the creep strain
components. Substituting Eq. (17) into (20), combining the results with

Eq. (19) and solving for A, one obtains:

. . 2.
E of _EC)_Q(K!T

e (3
i ijmn asii, mn mn ol (21)
B
where 5
_[. af  aF of  oF ] ( oF ¢ (k") 2 )
BEIEse— 58 *E e e T
3S 3S (22)
Pq Pq pgrs aSpq asrs ask] kI ST

Substituting Eq. (21) into (19) and the result into (20) and then comparing
the final result to Eq. (8), one can show that the instantaneous modulus tensor

is given by £ of oF E %
ijw ava astu tumn (23)

Dijmn ijmn

B

and the rate of change of stress due to creep strains, temperature changes,
etc. is given by angz 1 -

"> sC i
Pij = Dijmn Emn i (24)

Although the above expressions are given in rate form, the conversion to

incremental form is obvious.
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COMPUTER PROGRAM

The finite element computer program, AGGIE I, is based on the
incremental formulation outlined above. The program is capable of handling
two- and three-dimensional geometries utilizing isoparametric solid and
shell elements. The plasticity theory contained in the program is based
on the von Mises yield condition, the associated flow rule, and several
optional hardening rules (isotropic, kinematic, combined isotropic-kinematic,
or the mechanical sublayer model). At present, the program contains the
equation-of-state creep model with auxiliary hardening and load reversal
rules recommended in Ref. [16]. The creep strain model may be specified
in either functional form or in terms of a creep strain vs. time data

matrix.

SOME NUMERICAL RESULTS

This section presents some numerical results obtained with the AGGIE I
computer program. Problems involving primarily large strain and elastic-
plastic behavior have been previously reported in Refs. [2] and [8] and
consequently, problems involving creep response are emphasized here. Both
of these references contain experimental-numerical comparison studies of
several work hardening rules and the interested reader is directed to these
for details.

Figures 1 and 2 present creep strain vs. time results for a uniaxial
test specimen subjected to an isothermal, monotonic and load reversal
condition, respectively. The experimental results were obtained by ORNL [29].
The material in Fig. 1 is type 304 stanless steel at 1200 °F, ORNL preliminary
heat no. 8043813. The effective creep strain equation was given by a 5,000
hour Taw:

e - A(1-e""Y) + kt (25)
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6 -3.083
o

Qi

A(5) = 2.33 x 10°
r(

k(5) = 7.91 x 10

) = 1.354 x 103 exp(0.129 5) (26)

"1 rsinhi0.1932 5)1%

Qi

and o is in ksi and t in hours. The material in Fig. 2 is type 304 stainless
steel at 1100 °F, heat no. 9T2796. The creep equation parameters are given

by

5.436 x 1072 51-843

p =]
—
Qi
~
(]

5.929 x 1072 exp (0.2029 5)

-~
—
Qi
~
]

(27)
k(3) = 6.73 x 107° [sinh (0.1479 5)]3-0

In both cases, the results obtained with the present computer program are
seen to be in reasonable agreement with the experimental results. It should
be noted that these results were obtained using strain-hardening based on
total creep strain.

Figure 3 presents the isothermal, elastic-steady creep response for
an infinitely long, thick-walled cylinder subjected to a constant internal
pressure of 365 psi. The infinitely long cylinder has an inner radius of
0.16 inches and an outer radius of 0.25 inches. The material is assumed

6

to have a Young's modulus of 20 x 10° psi and a Poisson's ratio of 0.499.

The creep law is given by
-18 sh4

€. =6.4x10

’ (28)

The present results agree exactly with those of Greenbaum and Rubinstein [30]
and with an analytical solution reported in Ref. [30].

Figure 4 presents the isothermal, elastic-creep response for the same
infinitely long, thick walled cylindrical geometry described above subjected
to a constant internal pressure of 3,650 psi. The material is type 304

stainless steel, heat no. 972796, at a temperature of 1100 °F. Young's modulus

14




at this temperature is approximately 21.71 x 106 psi and Poisson's ratio is

0.3. The creep law parameters are the same as that given for the test

shown in Fig. 2. The finite element model consisted of seven 6-node
axisymmetric, isoparametric elements (with the plane strain condition
imposed through boundary conditions). The effective stress (o) results
shown are for numerical integration points approximately 0.002 inches from

the inner and outer surfaces. The present results are compared to those

obtained with the CREEP-PLAST computer program [31]. The discrepency in the

two solutions may be due to modeling differences although we cannot be sure.
Figure 5 presents deflection vs. load results for a simply supported

beam with a shear load applied at the center. The beam (B9) is 25 inches

long, 2 inches high and 1 inch wide and supported such that the effective f

length is 24 inches. The material is type 304 stainless steel (heat é

9T2796) with a Young's modulus of 21.71 x 106 psi, Poisson's ratio of

0.3, and a yield stress of 9,000 psi at 1100°F. The beam was subjected

to a load of 2,000 pounds, this load was then held constant for 312 hours,

and then increased to 2,250 pounds. The finite element model consisted

of five 8-node isoparametric elements and the kinematic hardening model

was used to represent the strain hardening response. The time-independent,

elastic-plastic computer results are compared to experimental results [32]

in Fig. 5. It is seen that the results agree quite well up to the 312 hour

hold period. During the hold period, the material hardens up and the

results do not agree after the load is increased (since the time independent

plasticity theory does not account for this).

FUTURE WORK
The work which has been reported herein has been based on incremental

plasticity theory and an equation-of-state creep model. The authors are




currently evaluating the various creep constituitive models by developing
uniaxial and biaxial computer programs for each and comparing numerical
results with experimental results. Although we have not yet studied in
detail the unified creep-plasticity formulations, it would appear that
they have great promise. In the present paper, we have not included any
numerical results for the non-isothermal or combined creep-plasticity

problem; however, we will present such results in the near future.
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